

Nitroalkanes in Aqueous Medium as an **Efficient and Eco-Friendly Source for the One-Pot Synthesis of 1,4-Diketones,** 1,4-Diols, δ -Nitroalkanols, and Hydroxytetrahydrofurans

Roberto Ballini,* Luciano Barboni, and Guido Giarlo

Dipartimento di Scienze Chimiche dell'Università di Camerino, Via S. Agostino 1, 62032 Camerino, Italy

roberto.ballini@unicam.it

Received July 30, 2003

Abstract: The Michael addition of primary aliphatic nitro compounds to α , β -unsaturated enones, performed in aqueous media, provides the one-pot synthesis of 1,4-diketones, 1,4diols, δ -nitroalkanols, and hydroxytetrahydrofurans, respectively, by the appropriate choice of the reaction conditions.

Aliphatic nitro compounds have proven to be valuable intermediates, and the chemical literature continuously reports progress in their utilization for the synthesis of a variety of target molecules. Moreover, these compounds are very powerful synthetic tools because they facilitate the carbon-carbon bond-forming processes and they can be easily converted into many other functionalities.¹

The synthesis of complex molecules is traditionally performed by a chain of separate reaction steps, each step requiring its own conditions, reagents, solvent, catalyst, and purification step. Now, environmental and economic pressure are forcing the chemical community to search for more efficient ways of performing chemical transformations, and in this context, a goal in present organic synthesis is to perform more synthetic steps by "one-pot" methods.²

Recently, there has been increasing recognition that organic reactions carried out in water may offer advantages over those occurring in organic solvents because water is cheap and safe, it allows a precise control of the pH, and the reactivity and/or the selectivity of the reaction can be dramatically influenced when carried out in water.³

With the aim to develop more efficient synthetic processes, reduce the number of separate reaction steps, and minimize byproducts, and in continuation with our studies devoted to the chemistry of nitro compounds, we have now found an interesting synergy between nitroalkanes and aqueous medium⁴ for the one-pot synthesis (Scheme 1) of the following compounds: (i) δ -nitroalkanols **3**, which have proven to be the key building blocks for the synthesis of tetrahydrofurans and spiroacetals;⁵ (ii) hydroxytetrahydrofurans (lactols) 4, intermediates in the synthesis of cyclic ethers,⁶ dihydrofurans,⁷ zoapatanol derivatives (the menses and labor-inducing principle of the Mexican plant *Montonoa tormentosa*),⁸ and nonactic acid,⁹ a component of the macrolide antibiotic nonactin; the hydroxytetrahydrofuran unit is also present in natural products such as seco-furoeremophilane derivatives, which are characteristic constituents of the plants of genus *Euryops*;¹⁰ (iii) 1,4-diketones 5, which are important intermediates in the synthesis of cyclopentenones, furans, pyrroles, thiophenes, and pyridazines;¹¹⁻¹⁶ and (iv) 1,4-diols 6, widely used molecules for the preparation of important heterocycles such as γ -lactones, pyrroles, and tetrahydrofurans,^{7,17}

(7) (a) Corey, E. J.; Cheng, X.-M. *The Logic of Chemical Synthesis*; John Wiley and Sons: New York, 1989. (b) Lindberg, T. *Strategies and* Tactics in Organic Synthesis; Academic Press: San Diego, 1994; Vol. 1. (c) Ho, T. L. Tactics of Organic Synthesis; John Wiley and Sons: New York 1994.

(8) Hajois, Z. G.; Wachter, M. P.; Werblood, H. M.; Adams, R. E. J. Org. Chem. 1984, 49, 2600-2608.

(9) Lee, J. Y.; Kim, B. H. Tetrahedron 1996, 52, 571-588.

(10) Gonser, P.; Jakupovic, J.; Mungai, G. M. Phytochemistry 1991, 30, 899-904.

(11) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, Georg (12) Dean, F. M. Adv. Heterocycl. Chem. 1982, 30, 172.

- (13) Sundberg, R. J. In Competensive Heterocyclic Chemistry, Vol.
 4; Katritsky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; p 329.
- (14) Hellison, R. A. Synthesis 1973, 397–412.
 (15) Ho, T. L. Synth. Commun. 1974, 4, 265–287.

 - (16) Stetter, H.; Kuhlmann, H. Org. React. 1991, 40, 407-496.

(17) Comprehensive Organic Functional Group Transformations; Katrinsky, A. R., Meth-Cohn, O., Rees, C. V., Eds.; Pergamon Press: Oxford, 1995; Vol. 6.

^{*} Corresponding author.

^{(1) (}a) Seebach, D.; Colvin, E. W.; Lehr, F.; Weller, T. Chimia 1979, 33, 1-18. (b) Rosini, G.; Ballini, R. Synthesis 1988, 833-847. (c) Ballini, R. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1997; Vol. 19, p 117. (d) Ballini, R. Synlett 1999, 1009-1018. (e) Ono, N. The Nitro Group in Organic Synthesis; John Wiley: New York, 2001.

^{(2) (}a) Hall, N. Science 1994, 266, 32. (b) Anastas, P. T.; Williamson, T. C. Green Chemistry. Frontiers in Benign Chemical Synthesis and Processes; Oxford University Press: Oxford, 1998. (c) Riiter, S. K. Sci. Technol. **2002**, 19–23. (d) Tietze, L. F.; Haunert, F. In Stimulating Concepts in Chemistry, Shibasaki, M., Stoddart, J. F., Vögtle, F., Eds.; Wiley-VCH: Weinheim, 2000; pp 39–64. (e) Filippini, M. H.; Rod-riguez, J. Chem. Rev. **1999**, 99, 27–76. (f) Drews, J. Science **2000**, 287, 1960-1964.

^{(3) (}a) Grieco, P. A. Organic Synthesis in Water; Blackie Academic and Professional: London, 1998. (b) Li, C. J.; Chan, T. H. Organic *Reactions in Aqueous Media*; John Wiley and Sons: New York, 1997; p 159. (c) Lubineau, A. *Chem. Ind.* **1996**, 123. (d) Fringuelli, F.; Piermatti, O.; Pizzo, F. In *Target in Heterocyclic Systems, Chemistry and Properties*, Attanasi, O., Spinelli, D., Eds.; Italian Society of Chemistry: Rome, 1997; Vol. 1, p 57. (e) Li, C. *J. Chem. Rev.* **1993**, *93*, 0000 2023 - 2035

^{(4) (}a) Lubineau, A.; Augé, J. Tetrahedron Lett. 1992, 33, 8073-8074. (b) Da Silva, F. M.; Gomes, A. K.; Jones, J., Jr. *Can. J. Chem.* **1999**, *77*, 624–627. (c) Ballini, R.; Barboni, L.; Bosica, G.; Filippone,

^{P.; Peretti, S.} *Tetrahedron* 2000, *56*, 4095–4099.
(5) (a) Ballini, R.; Fiorini, D.; Gil, M. V.; Palmieri, A.; Román, E.; Serrano, J. A. *Tetrahedron Lett.* 2003, *44*, 2795–2797. (b) Occhiato, E. G.; Guarna, A.; De Sarlo, F.; Scarpi, D. Tetrahedron: Asymmetry 1995, 6, 2971-2976.

⁽⁶⁾ Yoda, H.; Mizutani, M.; Takabe, K. Heterocycles 1998, 48, 679-686.

ΓABLE 1.	δ -Nitroalkanols	3	Prepared
-----------------	-------------------------	---	----------

				-			
3	R	\mathbb{R}^1	yield (%)	3	R	\mathbb{R}^1	yield (%)
a b c d	Me Et Pr Me	Me Me Me Et	82 86 83 94	e f g	Et Pr Ph	Et Et Et	82 78 79

SCHEME 2

SCHEME 3

In the past, numerous methods have been reported for the synthesis of the compounds 3^{18} 4^{19} 5^{20} and 6^{21} however, they need a multistep sequence and most of them suffer from drawbacks such as the use of harsh conditions, employment of expensive chemical, and/or tedious, toxic procedures. Furthermore, no method is general for the synthesis of all these classes of molecules, so that other efficient, eco-friendly sources for their preparation are welcomed.

We have now found that the two- and three-step sequences needed for the preparation of compounds 3-6could be reduced in a one-pot procedure by employing the aqueous medium and starting from nitroalkanes and α,β -unsaturated ketone, using K₂CO₃ and the appropriate combination of oxidative/reductive conditions.

Preparation of δ **-Nitroalkanols (3).** The preparation of δ -nitroalkanols **3** was achieved in good yields (78–94%, Table 1) by reaction between the nitroalkanes 1 and the unsaturated ketones 2, followed by in situ reduction with NaBH₄ (Scheme 2). The latter was chosen both because it can be used in water and because it does not reduce the nitro group. Another advantage of NaBH₄ is the absence of environmental effects of the byproducts (see the safety data sheet of sodium borate at http://msds. ehs.cornell.edu/msdsdoddata.asp).

The nitroalkanols were obtained as a 1:1 diastereoisomeric mixture. In the case of compound 3h (Scheme 3, 86% yield), two of the four possible diastereomers were isolated. Further transformation of the diatereoisomeric

(21) (a) Utimoto, K.; Uchida, K.; Yamaya, M.; Nozaki, H. Tetrahedron 1977, 33, 1945–1948. (b) Ballini, R.; Bosica, G.; Damiani, M.; Righi, P. Tetrahedron 1999, 55, 13451-13456.

mixture using the modified Nef reaction showed they were the cis and trans diastereoisomers in a 3:1 ratio (see compound 4'a). On the basis of the NOESY spectrum, the configuration of the carbon bearing the nitro group could not be assigned.

Preparation of Hydroxytetrahydrofurans (Lactols) (4). Hydroxytetrahydrofurans 4 were obtained by in situ Nef reaction of the corresponding δ -nitroalkanols obtained as reported above, using a 30% water solution of H₂O₂ (Scheme 4). The conversion of a nitro group into a carbonyl can be accomplished by several alternative methods²² although the use of H_2O_2/K_2CO_3 in a modified Nef reaction²³ appeared to us to be the most compatible with our effort to develop environmentally friendly processes.

The expected γ -hydroxyketones could not be isolated. They spontaneously cyclized to the corresponding lactols 4, which were isolated as diatereomeric mixtures and identified on the basis of their ¹³C NMR spectra (signals at about 110-115 ppm corresponding to the hemiketal-C).

When cyclohexenone was used as a Michael acceptor the cyclization could not happen and the expected γ -hydroxyketones 4' were obtained (Scheme 5) in satisfactory yields. In the case of compound 4'a,²⁴ the cis and trans diastereoisomers were isolated in a 3:1 ratio and their configuration was assigned on the basis of the NOESY experiment. For compound 4'b, only the cis diastereo-

(23) (a) Olah, G. A.; Arvanghi, M.; Vankar, Y. D.; Prakash, G. K. S. *Synthesis* **1980**, 662–663. (b) Ballini, R.; Marcantoni, E.; Petrini, M.; Rosini, G. Synthesis 1988, 915-918.

(24) Ceccherelli, P.; Curini, M.; Marcotullio, M. C.; Epifano, F.;
Rosati, O. Synth. Commun. 1998, 28, 3057–3064.
(25) (a) Ballini, R.; Petrini, M.; Marcantoni, E.; Rosini, G. Synthesis

- (a) Dahmi, R., Vettini, M., Martantoini, E., Rosini, e. Synthesis, 1988, 231–233.
 (b) Yasuda, M.; Oh-hata, T.; Shibata, I.; Baba, A.; Matsuda, H. *J. Chem. Soc., Perkin Trans. 1* 1993, 859–866.
 (26) Larcheveque, M.; Valette, G.; Cuvigny, T.; Normant, H. *Synthesis* 1975, 256–259.
- (27) Bach, J.; Berenguer, R.; Garcia, J.; Lopez, M.; Manzanal, J.; Vilarrasa, J. *Tetrahedron* **1998**, *54*, 14947–14962.
- (28) Yasuda, M.; Nishio, M.; Shibata, I.; Baba, A.; Matsuda, H. J. Org. Chem. 1994, 59, 486-487.
- (29) Ikeda, H.; Sato, E.; Sugai, T.; Ohta, H. Tetrahedron 1996, 52,
- (30) Burk, M. J.; Feaster, J. E.; Harlow, R. L. Tetrahedron: Asymmetry 1991, 2, 569-592.
- (31) (a) Foubelo, F.; Gutierrez, A.; Yus, M. *Synthesis* **1999**, 503–514. (b) Nakamura, K.; Kitayama, T.; Inoue, Y.; Ohno, A. *Bull. Chem.* Soc. Jpn. 1990, 63, 91-96.

^{(18) (}a) Shechter, H.; Ley, D. E.; Zeldin, L. J. Am. Chem. Soc. **1952**, 74, 3664–3668. (b) Stanchev, S.; Milenkov, B.; Hesse, M. Tetrahedron Lett. 1993, 34, 6107–6108. (c) (d) Reetz, M. T.; Wünsch, T. J. Chem. Soc., Chem. Commun. 1990, 1562–1564. (d) Forsyth, A. C.; Gould, R. O.; Paton, R. M.; Salder, I. H.; Watt, I. J. Chem. Šoc., Perkin Trans. 1 1993, 2737-2741.

^{(19) (}a) Lalić, G.; Petrovski, Ž.; Galonić, D.; Matović, R.; Saičić, R. N. Tetrahedron **2001**, *57*, 583–591. (b) Nakano, T.; Terada, T.; Ishii, Y.; Ogawa, M. Synthesis **1986**, 774–776.

^{(20) (}a) Brown, H. C.; Racherla, U. S.; Singh, S. M. Synthesis 1984, 922-924. (b) Vankar, P. S.; Rathore, R.; Chandrasekaran, S. Synth. Commun. 1987, 17, 195-201. (c) Baciocchi, E.; Casu, A.; Ruzziconi, R. Tetrahedron Lett. 1989, 30, 3707-3710.

⁽²²⁾ Pinnick, H. W. Org. React. 1990, 38, 655-792.

 TABLE 2.
 1,4-Diketones 5 Prepared

5	R	\mathbb{R}^1	yield (%)	5	R	\mathbb{R}^1	yield (%)
a ^a d ²⁵ e ²⁶	Me Me Et	Me Et Et	73 68 72	f ²⁷ i ²⁸	Pr Ph	Et Me	70 69

^a Compound commercially available.

SCHEME 7

TABLE 3.1,4-Diols 6 Prepared

6	R	\mathbb{R}^1	yield (%)	6	R	\mathbb{R}^1	yield (%)
a ²⁹ e ^{26,30} f	Me Et Pr	Me Et Et	60 64 61	i ³¹ I ^{21a}	Ph Bu	Me Me	72 60

isomer could be isolated. Of great interest is the possibility of preserving the hydroxyl group under our oxidative conditions.

Preparation of 1,4-Diketones (5). Due to the good results obtained for the synthesis of γ -hydroxyketones, we successfully investigated the use of H₂O₂ for the onepot preparation of 1,4-diketones. Thus, after reaction between the nitroalkanes (1) and the unsaturated ketones (2), the mixture was treated with a 30% water solution of H₂O₂, giving the corresponding diketone **5** (Scheme 6) in good yields (Table 2).

In the case of compounds **5a** and **5e**, an acidic workup of the reaction gave a mixture of the expected diketones and the corresponding 2,5-dihydroxytetrahydrofuran analogues **5**'. The cis/trans configuration of compounds **5**' was assigned on the basis of the -OH chemical shift, considering the higher downfield shift of the -OH protons due to the intramolecular hydrogen bonding in the case of the cis stereoisomer. For the product **5a** only the trans diastereoisomer was isolated, whereas for **5e** both diastereoisomers were isolated in a 1:1 ratio.

Preparation of 1,4-Diols (6). 1,4-Diols were prepared by in situ reduction of the 1,4-diketones obtained as reported above, using an excess of NaBH₄ as reducing agent (Scheme 7). For all the diols, the yields reported in Table 3 refer to the 1:1 diastereomeric inseparable mixture.

With our procedure, a variety of different building blocks can be easily prepared in one-pot starting from a common intermediate. Moreover, the method provides satisfactory to good overall yields using inexpensive and ecologically friendly conditions with evident environmental advantages for widespread industrial use. Moreover, by the obtained results it is evident that water shows a great versatility in order to assembly different methodologies for the one-pot transformations of the starting nitroalkanes and the conjugated enones into the title targets. Thus, our report clearly demonstrates the improved versatility of the nitroalkanes in aqueous media and enhances the importance of both nitroalkanes and aqueous media in current organic synthesis.

Experimental Section

General Procedure for the Preparation of the δ -Nitroalkanols (3). A 2 mL water solution of the nitroalkane 1 (1.5 mmol) and K₂CO₃ (3 mmol) was stirred at room temperature for 5 min, and then the conjugated enone 2 (1.5 mmol) was added. After the mixture was stirred at room temperature for 3 h, NaBH₄ (1,5 mmol) was added, and the reaction mixture was stirred at rt for 3 h and then extracted with AcOEt. The organic layer was dried over Na₂SO₄, filtered, and evaporated. The crude product **3** was purified by column chromatography (silica gel, cyclohexane/AcOEt = 4:1).

Compound 3a (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 1.21 (d, J = 6.6 Hz, 3H), 1.48 (m, 2H), 1.54 (d, J = 6.6 Hz, 3H), 1.98 (m, 2H), 3.82 (m, 1H), 4.60 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 19.4, 19.6, 23.8, 23.87, 31.4, 31.8, 34.9, 35.2, 67.1, 67.5, 83.6, 84.0. IR (neat): 3392, 2970, 2930, 1560, 1547, 1391, 1361. GC–MS (EI): m/z 132 (M – CH₃), 83, 55, 45 (100). Anal. Calcd for C₆H₁₃NO₃: C, 48.95; H, 8.91; N, 9.52. Found: C, 49.02; H, 8.89; N, 9.53.

Compound 3b (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.97 (t, J = 7.0 Hz, 3H), 1.20 (d, J = 5.8 Hz, 3H), 1.43 (m, 2H), 1.92 (m, 4H), 3.80 (m, 1H), 4.44 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 10.4, 10.5, 23.9, 24.1, 27.5, 27.6, 29.7, 30.3, 35.0, 35.4, 67.1, 67.8, 90.3, 90.9. IR (neat): 3391, 2973, 2933, 1560, 1548, 1372, 1334. GC-MS (EI): m/z 146 (M - CH₃), 97, 55 (100), 45. Anal. Calcd for C₇H₁₅NO₃: C, 52.13; H, 9.38; N, 8.69. Found: C, 52.22; H, 9.36; N, 8.68.

Compound 3c (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.94 (t, J = 7.0 Hz, 3H), 1.20 (d, J = 5.9 Hz, 3H), 1.23–2.20 (m, 8H), 3.81 (m, 1H), 4.52 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 13.6 (2C), 19.26, 19.28, 23.9, 24.0, 30.0, 30.6, 34.9, 35.4, 36.1, 36.2, 67.1, 67.7, 88.6, 89.2. IR (neat): 3400, 2965, 2933, 1558, 1551, 1377. GC–MS (EI): m/z 160 (M – CH₃), 131, 69 (100), 55. Anal. Calcd for C₈H₁₇NO₃: C, 54.81; H, 9.78; N, 8.00. Found: C, 54.69; H, 9.80; N, 7.99.

Compound 3d (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.93 (t, J = 7.3 Hz, 3H), 1.32–1.60 (m, 4H), 1.55 (d, J = 6.6 Hz, 3H), 1.73–2.28 (m, 2H), 3.54 (m, 1H), 4.61 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 9.9, 10.0, 19.35, 19.44, 30.3, 30.4, 31.4, 31.7, 32.5, 32.9, 72.2, 72.6, 83.6, 84.1. IR (neat): 3400, 2965, 2936, 1560, 1538, 1390, 1358. GC–MS (EI): m/z 132 (M – CH₂CH₃), 97, 85, 55 (100). Anal. Calcd for C₇H₁₅-NO₃: C, 52.13; H, 9.38; N, 8.69. Found: C, 52.21; H, 9.40; N, 8.68.

Compound 3e (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.91 (t, J= 7.6 Hz, 3H), 0.95 (t, J= 7.6 Hz, 3H), 1.29–1.60 (m, 4H), 1.71–2.18 (m, 4H), 3.52 (m, 1H), 4.43 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 9.9, 10.0, 10.4 (2C), 27.4, 27.5, 29.6, 30.3, 30.5, 30.6, 32.6, 33.1, 72.2, 72.9, 90.3, 90.9. IR (neat): 3400, 2971, 2936, 1545, 1538, 1375. GC–MS (EI): *m*/2 146 (M – CH₂CH₃), 117, 99, 69 (100). Anal. Calcd for C₈H₁₇-NO₃: C, 54.81; H, 9.78; N, 8.00. Found: C, 54.73; H, 9.80; N, 7.98.

Compound 3f (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.93 (t, J = 7.6 Hz, 3H), 0.94 (t, J = 6.9 Hz, 3H), 1.24–1.57 (m, 6H), 1.58–2.24 (m, 4H), 3.54 (m, 1H), 4.53 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 9.96, 10.05, 13.7 (2C), 19.3, 19.3, 29.9, 30.6, 30.7 (2C), 32.7, 33.2, 36.2, 36.3, 72.3, 73.0, 88.7, 89.3. IR (neat): 3391, 2964, 2935, 1548, 1538, 1379. GC–MS (EI) m/z 160 (M – CH₂CH₃), 95, 69, 55, 41 (100). Anal.

Calcd for $C_9H_{19}NO_3$: C, 57.10; H, 10.12; N, 7.40. Found: C, 57.18; H, 10.14; N, 7.41.

Compound 3g (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 1.22 (bd, J = 5.9 Hz, 3H), 1.46 (m, 2H), 2.22 (m, 1H), 2.59 (m, 1H), 3.87 (m, 1H), 5.51 (m, 1H), 7.44 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): δ 23.8, 23.9, 30.3, 30.6, 35.2, 35.4, 67.3, 67.5, 91.4, 91.7, 127.8 (2C), 127.9 (2C), 129.2 (4C), 130.0 (2C), 134.7 (2C). IR (neat): 3391, 3092, 2969, 2930, 1560, 1547, 1538, 1364, 1304, 717, 696. GC-MS (EI): *m*/*z* 163 (M - NO₂), 145 (100), 117, 91. Anal. Calcd for C₁₁H₁₅NO₃: C, 63.13; H, 7.23; N, 6.70. Found: C, 63.30; H, 7.25; N, 6.68.

Compound *cis***-3h.** Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.83–1.39 (m, 4H), 1.52 (d, J = 6.6 Hz, 3H), 1.67 (m, 2H), 1.94 (m, 3H), 3.61 (m, 1H), 4.42 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 16.5, 23.5, 27.2, 35.2, 38.7, 40.9, 70.1, 88.0. IR (neat): 3390, 2975, 2930, 1560, 1547, 1370, 1334. GC–MS (EI): m/z 126 (M – HNO₂), 109 (100), 67, 55. Anal. Calcd for C₈H₁₅NO₃: C, 55.46; H. 8.73; N. 8.09. Found: C, 55.41; H. 8.71; N. 8.11.

H, 8.73; N, 8.09. Found: C, 55.41; H, 8.71; N, 8.11. **Compound** *trans*-3h. Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.88–1.36 (m, 4H), 1.52 (d, J = 6.6 Hz, 3H), 1.64 (m, 2H), 1.92 (m, 3H), 3.63 (m, 1H), 4.41 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 16.5, 23.3, 28.6, 35.4, 37.3, 40.9, 70.3, 88.2. IR (neat): 3390, 2976, 2930, 1561, 1548, 1370, 1334. GC–MS (EI): *m/z* 126 (M – HNO₂) 109 (100), 67, 55. Anal. Calcd for C₈H₁₅NO₃: C, 55.46; H, 8.73; N, 8.09. Found: C, 55.45; H, 8.70; N, 8.10.

General Procedure for the Preparation of the γ -Hydroxyketones and Hydroxytetrahydrofurans (4). A 2 mL water solution of the nitroalkane 1 (1.5 mmol) and K₂CO₃ (3 mmol) was stirred at room temperature for 5 min, and then the conjugated enone 2 (1.5 mmol) was added. After the mixture was stirred at room temperature for 3 h, NaBH₄ (1,5 mmol) was added, and the resulting mixture was stirred at rt for 3 h. A 30% aqueous solution of H₂O₂ (4 mL) was then added, and the reaction mixture was stirred overnight at rt and then acidified with 6 N HCl and extracted with AcOEt. The organic layer was dried over Na₂SO₄, filtered, and evaporated. The crude product 4 was purified by column chromatography (silica gel, cyclohexane/AcOEt = 4:1).

Compound 4a (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 1.28 (d, J = 5.9 Hz, 3H), 1.35 (d, J = 5.9 Hz, 3H), 1.52 (s, 3H), 1.56 (s, 3H), 1.40–2.20 (m, 10H), 4.30 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 20.9, 21.0, 22.7, 23.4, 32.88, 32.93, 35.75, 35.83, 75.7, 76.3, 112.1, 113.2. IR (neat): 3326, 2973, 1540, 1375, 1159. GC–MS (EI): m/z 99 (M – OH), 43 (100). Anal. Calcd for C₆H₁₂O₂: C, 62.02; H, 10.42. Found: C, 62.15; H, 10.40.

Compound 4b (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.94 (t, J = 7.3 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H), 1.27 (d, J = 6.6 Hz, 3H), 1.35 (d, J = 6.6 Hz, 3H), 1.30–2.20 (m, 14H), 4.31 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 8.8, 8.9, 20.7, 22.3, 28.0, 28.2, 32.4, 32.7, 32.8, 33.6, 76.2, 77.9, 115.6, 115.8. IR (neat): 3342, 2973, 1560, 1380, 1154. GC–MS (EI) m/z 113 (M – OH), 57 (100). Anal. Calcd for C₇H₁₄O₂: C, 60.97; H, 11.95. Found: C, 60.83; H, 11.97.

Compound 4c (Diastereomeric Mixture). Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 0.93 (m, 12H), 1.21–2.20 (m, 22H), 4.51 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 9.9, 10.0, 13.7, 14.5, 19.3, 19.3, 29.9, 30.4, 32.6, 32.7, 36.1, 36,3, 37.5, 38.2, 72.5, 73.2, 110.2, 110.6. IR (neat): 3342, 2975, 1558, 1380, 1156. GC–MS (EI) *m/z* 141 (M – OH), 71 (100). Anal. Calcd for C₉H₁₈O₂: C, 68.30; H, 11.47. Found: C, 68.17; H, 11.50.

Compound *trans*-4'a. Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 1.20–1.97 (m, 8H), 2.16 (s, 3H), 2.83 (m, 1H), 4.15 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 19.9, 27.8, 28.2, 32.8, 34.7, 45.8, 66.0, 212.5. IR (neat): 3400, 2935, 2860, 1708. GC–MS (EI) *m*/*z* 142 (M), 124, 81, 67, 43 (100). Anal. Calcd for C₈H₁₄O₂: C, 67.56; H, 9.93. Found: C, 67.70; H, 9.91.

Compound *cis*-4'a. Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 1.12–1.40 (m, 4H), 1.82 (m, 2H), 1.93 (m, 1H), 2.10 (m, 1H),

2.13 (s, 3H), 2.41 (m, 1H), 3.61 (m, 1H). $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃): δ 23.4, 27.6, 28.2, 35.1, 37.0, 50.0, 69.9, 211.3. IR (neat): 3394, 2933, 2858, 1702. GC–MS (EI): m/z 142 (M), 124, 81, 67, 43 (100). Anal. Calcd for $C_8H_{16}O_3$: C, 59.96; H, 10.07. Found: C, 59.79; H, 10.06.

Compound *cis*-4'b. Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 1.05 (t, J = 7.3 Hz, 3H), 1.13–1.45 (m, 4H), 1.87 (m, 4H), 2.09 (m, 1H), 2.45 (m, 1H), 2.48 (q, J = 7.3 Hz, 2H), 3.64 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 8.0, 23.5, 27.8, 34.0, 35.3, 37.2, 49.1, 70.1, 213.6. IR (neat): 3402, 2936, 2859, 1708. GC–MS (EI): m/z 156 (M), 138, 127, 109, 81 (100). Anal. Calcd for C₉H₁₆O₂: C, 69.18; H, 10.33. Found: C, 69.31; H, 10.35.

General Procedure for the Preparation of the 1,4-Diketones (5). A 2 mL water solution of the nitroalkane 1 (1.5 mmol) and K_2CO_3 (3 mmol) was stirred at room temperature for 5 min, and then the conjugated enone 2 (1.5 mmol) was added. After the mixture was stirred at room temperature for 3 h, 4 mL of a 30% aqueous solution of H_2O_2 was added and the reaction mixture was stirred overnight at rt. The mixture was then extracted with AcOEt, and the organic layer was dried over Na₂SO₄, filtered, and evaporated. The crude product 5 was purified by column chromatography (silica gel, cyclohexane/ AcOEt = 4:1).

Compound 5'a. Amorphous solid. ¹H NMR (200 MHz, CDCl₃): δ 1.49 (s, 6H), 1.64 (m, 2H), 1.88 (m, 2H), 8.34 (bs, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 19.3, 26.6, 108.3. IR (neat): 3338, 2997, 1378, 1120. GC-MS (EI): *m*/*z* 115 (M - OH), 99, 88, 71, 43 (100). Anal. Calcd for C₆H₁₂O₃: C, 54.51; H, 9.16. Found: C, 54.46; H, 9.15.

Compound cis-5'e. Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.94 (t, J = 7.3 Hz, 6H),1.64–2.20 (m, 8H), 9.09 (bs, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 8.6, 28.2, 31.6, 116.8. IR (neat): 3340, 2995, 1375, 1124. GC–MS (EI): m/z 142 (M – H₂O), 113 (100), 57, 29. Anal. Calcd for C₈H₁₆O₃: C, 59.96; H, 10.07. Found: C, 60.08; H, 10.08.

Compound *trans*-5'e. Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.98 (t, J = 7.3 Hz, 6H),1.78 (m, 2H), 2.10 (m, 6H), 7.98 (s, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 8.8, 28.9, 32.2, 116.8. IR (neat): 3338, 2994, 1378, 1120. GC–MS (EI): m/z 142 (M – H₂O), 113 (100), 57, 29. Anal. Calcd for C₈H₁₆O₃: C, 59.96; H, 10.07. Found: C, 59.91; H, 10.05.

General Procedure for the Preparation of the 1,4-Diols (6). A 2 mL water solution of the nitroalkane 1 (1.5 mmol) and K_2CO_3 (3 mmol) was stirred at room temperature for 5 min, and then the conjugated enone 2 (1.5 mmol) was added. After the mixture was stirred at room temperature for 3 h, 4 mL of a 30% aqueous solution of H_2O_2 was added and the reaction mixture was stirred overnight at rt. The mixture was then treated with an excess of NaBH₄ (180 mg), stirred at rt for 2 h, and then extracted with AcOEt. The organic layer was dried over Na₂-SO₄, filtered, and evaporated. The crude product **6** was purified by column chromatography (silica gel, cyclohexane/AcOEt = 7:3).

Compound 6f (Diastereomeric Mixture). Yellow oil. ¹H NMR (200 MHz, CDCl₃): δ 0.94 (t, J = 6.9 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H), 1.33–1.78 (m, 10H), 2.35 (bs, 2H), 3.61 (m, 2H). ¹³C NMR (50 MHz, CDCl₃): δ 10.2 (2C), 14.3 (2C), 19.1 (2C), 30.3, 30.7, 32.8, 33.4, 33.8, 34.3, 39.8, 40.1, 71.7, 72.2, 73.4, 73.9. IR (neat): 3306, 2928, 1456. GC–MS (EI): m/z 131 (M – CH₂-CH₃), 113, 95, 55, 43 (100), 29. Anal. Calcd for C₉H₂₀O₂: C, 67.44; H, 12.59. Found: C, 67.32; H, 12.60.

Acknowledgment. This work was supported by the University of Camerino-Italy and by MIUR-Italy (Project "Il Mezzo Acquoso nelle Applicazioni Sintetiche dei Nitrocomposti Alifatici").

JO0351163